Extensions 1→N→G→Q→1 with N=C2×C50 and Q=C22

Direct product G=N×Q with N=C2×C50 and Q=C22
dρLabelID
C23×C50400C2^3xC50400,55

Semidirect products G=N:Q with N=C2×C50 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C50)⋊C22 = D4×D25φ: C22/C1C22 ⊆ Aut C2×C501004+(C2xC50):C2^2400,39
(C2×C50)⋊2C22 = D4×C50φ: C22/C2C2 ⊆ Aut C2×C50200(C2xC50):2C2^2400,46
(C2×C50)⋊3C22 = C2×C25⋊D4φ: C22/C2C2 ⊆ Aut C2×C50200(C2xC50):3C2^2400,44
(C2×C50)⋊4C22 = C23×D25φ: C22/C2C2 ⊆ Aut C2×C50200(C2xC50):4C2^2400,54

Non-split extensions G=N.Q with N=C2×C50 and Q=C22
extensionφ:Q→Aut NdρLabelID
(C2×C50).C22 = D42D25φ: C22/C1C22 ⊆ Aut C2×C502004-(C2xC50).C2^2400,40
(C2×C50).2C22 = C4○D4×C25φ: C22/C2C2 ⊆ Aut C2×C502002(C2xC50).2C2^2400,48
(C2×C50).3C22 = C4×Dic25φ: C22/C2C2 ⊆ Aut C2×C50400(C2xC50).3C2^2400,11
(C2×C50).4C22 = C50.D4φ: C22/C2C2 ⊆ Aut C2×C50400(C2xC50).4C2^2400,12
(C2×C50).5C22 = C4⋊Dic25φ: C22/C2C2 ⊆ Aut C2×C50400(C2xC50).5C2^2400,13
(C2×C50).6C22 = D50⋊C4φ: C22/C2C2 ⊆ Aut C2×C50200(C2xC50).6C2^2400,14
(C2×C50).7C22 = C23.D25φ: C22/C2C2 ⊆ Aut C2×C50200(C2xC50).7C2^2400,19
(C2×C50).8C22 = C2×Dic50φ: C22/C2C2 ⊆ Aut C2×C50400(C2xC50).8C2^2400,35
(C2×C50).9C22 = C2×C4×D25φ: C22/C2C2 ⊆ Aut C2×C50200(C2xC50).9C2^2400,36
(C2×C50).10C22 = C2×D100φ: C22/C2C2 ⊆ Aut C2×C50200(C2xC50).10C2^2400,37
(C2×C50).11C22 = D1005C2φ: C22/C2C2 ⊆ Aut C2×C502002(C2xC50).11C2^2400,38
(C2×C50).12C22 = C22×Dic25φ: C22/C2C2 ⊆ Aut C2×C50400(C2xC50).12C2^2400,43
(C2×C50).13C22 = C22⋊C4×C25central extension (φ=1)200(C2xC50).13C2^2400,21
(C2×C50).14C22 = C4⋊C4×C25central extension (φ=1)400(C2xC50).14C2^2400,22
(C2×C50).15C22 = Q8×C50central extension (φ=1)400(C2xC50).15C2^2400,47

׿
×
𝔽